

Das kennen wir bereits aus dem vergangenen Unterricht:

Funktionen, deren Graph eine Gerade darstellen, nennen wir lineare Funktionen.

Sie haben die allgemeine Form:

$$y = mx + b$$

Funktionen, deren Graph eine Gerade darstellen, nennen wir lineare Funktionen.

Sie haben die allgemeine Form:

$$y = mx + b$$

Faktor, mit dem x multipliziert werden soll

Abstand vom Nullpunkt

Funktionen, deren Graph eine Gerade darstellen, nennen wir lineare Funktionen.

Sie haben die allgemeine Form:

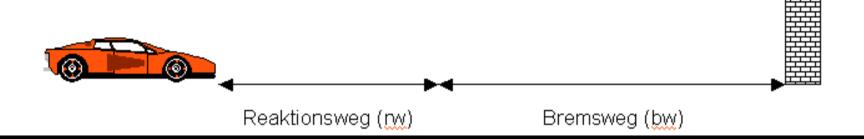
$$y = mx + b$$

Steigung

y-Achsen-Abschnitt

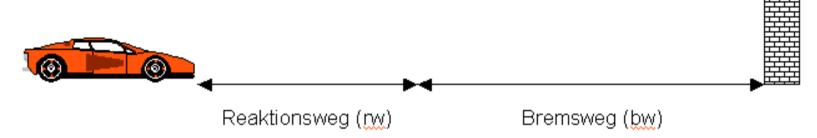
Unterscheidung lineare und quadratische Funktionen

Der Anhalteweg eines Autos setzt sich zusammen aus dem Reaktionsweg und dem Bremsweg.



Unterscheidung lineare und quadratische Funktionen

Der Anhalteweg eines Autos setzt sich zusammen aus dem Reaktionsweg und dem Bremsweg.

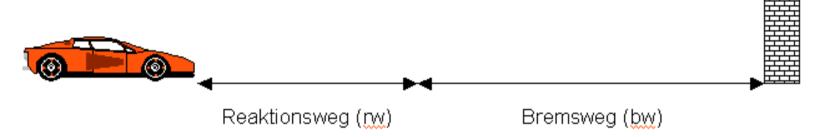


Reaktions- und Bremsweg berechnen sich nach den folgenden Formeln:

$$\underline{W} = Geschwindigkeit \cdot \frac{3}{10}$$

Unterscheidung lineare und quadratische Funktionen

Der Anhalteweg eines Autos setzt sich zusammen aus dem Reaktionsweg und dem Bremsweg.



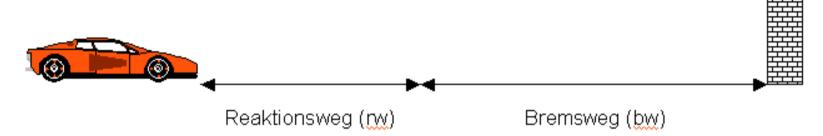
Reaktions- und Bremsweg berechnen sich nach den folgenden Formeln:

$$\underline{W} = Geschwindigkeit \cdot \frac{3}{10}$$

Lineare Funktion

Unterscheidung lineare und quadratische Funktionen

Der Anhalteweg eines Autos setzt sich zusammen aus dem Reaktionsweg und dem Bremsweg.



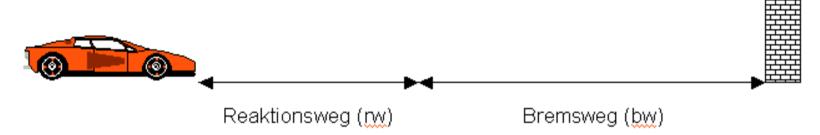
Reaktions- und Bremsweg berechnen sich nach den folgenden Formeln:

$$\underline{\text{rw}} = Geschwindigkeit \cdot \frac{3}{10} \qquad \qquad \underline{\text{bw}} = \left(\frac{Geschwindigkeit}{10}\right)$$

Lineare Funktion

Unterscheidung lineare und quadratische Funktionen

Der Anhalteweg eines Autos setzt sich zusammen aus dem Reaktionsweg und dem Bremsweg.



Reaktions- und Bremsweg berechnen sich nach den folgenden Formeln:

$$\underline{\mathsf{rw}} = Geschwindigkeit \cdot \frac{3}{10} \qquad \qquad \underline{\mathsf{bw}} = \left(\frac{Geschwindigkeit}{10}\right)^{3}$$

Lineare Funktion

Quadratische Funktion

Unterscheidung lineare und quadratische Funktionen

Der Anhalteweg eines Autos setzt sich zusammen aus dem Reaktionsweg und dem Bremsweg.

Reaktions- und Bremsweg berechnen sich nach den folgenden Formeln:

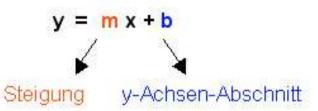
$$\underline{\text{DW}} = Geschwindigkeit} \cdot \frac{3}{10}$$

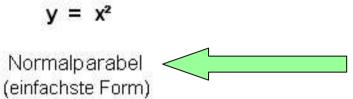
$$\underline{\text{DW}} = \left(\frac{Geschwindigkeit}{10}\right)^2$$

Diese Formeln lassen sich als lineare bzw. quadratische Funktion darstellen, wobei die Variable x die Geschwindigkeit abbildet:

$$y = \frac{3}{10}x$$
 (linear) $y = \frac{1}{100}x^2$ (quadratisch

Beide Funktionsarten haben die folgende allgemeine Form:

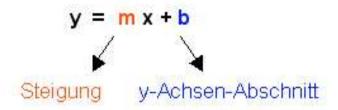




Beide Funktionsarten haben die folgende allgemeine Form:

Die beiden Funktionsarten haben unterschiedliche Bilder (Graphen).

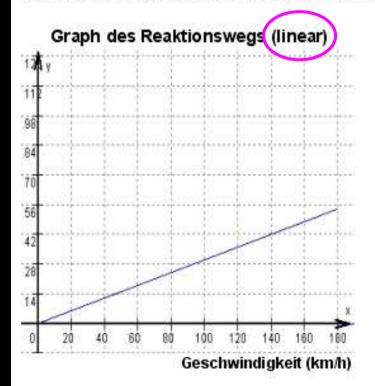
Beide Funktionsarten haben die folgende allgemeine Form:



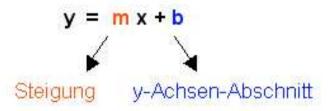
$$y = x^2$$

Normalparabel (einfachste Form)

Die beiden Funktionsarten haben unterschiedliche Bilder (Graphen).



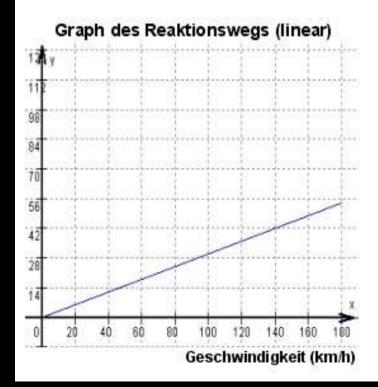
Beide Funktionsarten haben die folgende allgemeine Form:

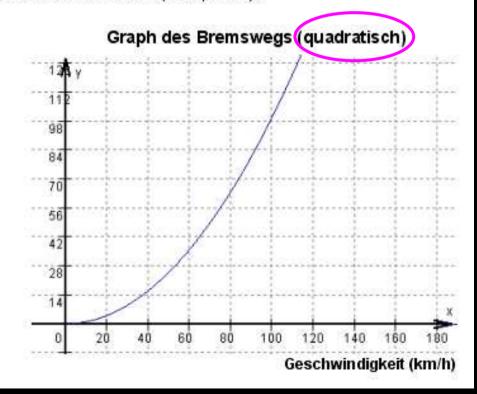


$$y = x^2$$

Normalparabel (einfachste Form)

Die beiden Funktionsarten haben unterschiedliche Bilder (Graphen).

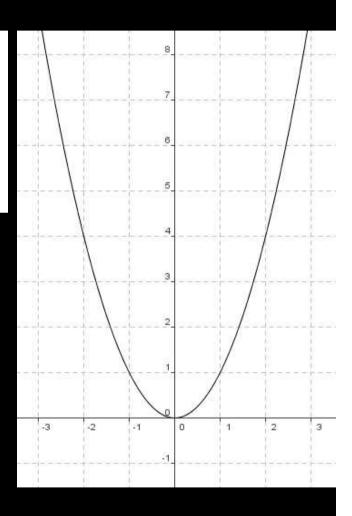




Das Bild der quadratischen Funktion

Der Graph der quadratischen Funktion $y = x^2$ ist eine Parabel, die zur y-Achse symmetrisch ist. (Normalparabel)

Der Scheitelpunkt liegt bei S (0/0).



Verschiebung entlang der y-Achse:

$$f(x) = x^2 + 2$$

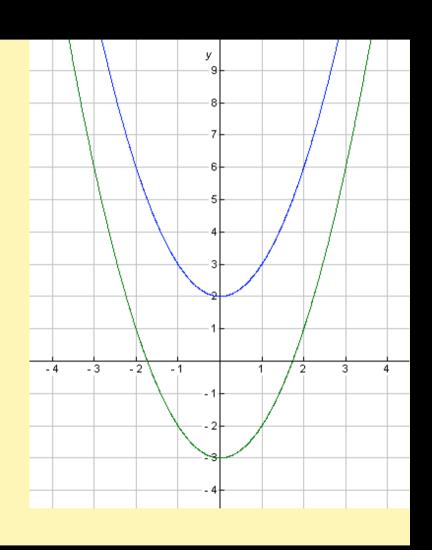
Verschiebung entlang der y-Achse:

$$f(x) = x^2 + 2$$

Die letzte Zahl gibt die Verschiebung entlang der y-Achse an.

Das heißt:

$$f(x) = x^2 + 2 \implies S(0 | +2)$$



Verschiebung entlang der y-Achse:

$$f(x) = x^2 + 2$$

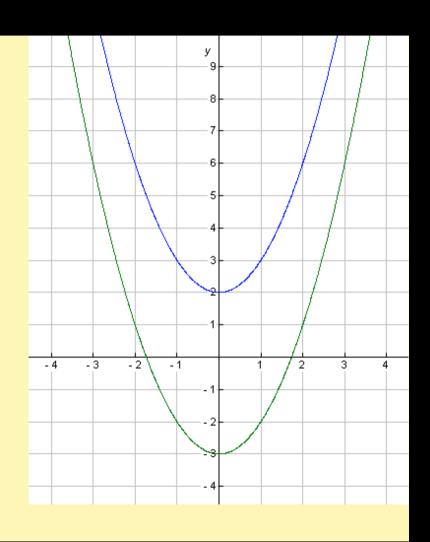
$$f(x) = x^2 - 3$$

Die letzte Zahl gibt die Verschiebung entlang der y-Achse an.

Das heißt:

$$f(x) = x^2 + 2 \implies S(0 | +2)$$

$$f(x) = x^2 - 3 \implies S(0 \mid -3)$$



Verschiebung entlang der x-Achse:

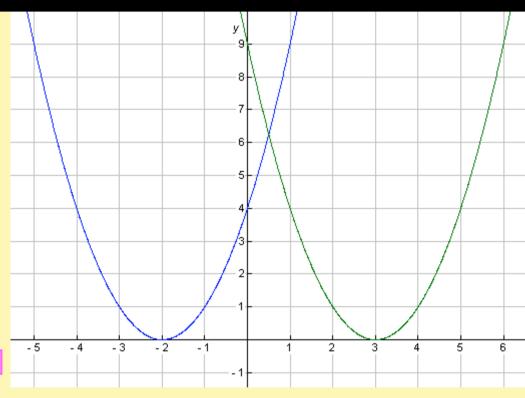
$$f(x) = (x+2)^2$$

Verschiebung entlang der x-Achse:

$$f(x) = (x + 2)^2$$

Die Zahl in der Klammer gibt die Verschiebung entlang der x-Achse an.

[Achtung: Vorzeichenwechsel!!]



Das heißt:

$$f(x) = (x + 2)^2 \Rightarrow S(-2 \mid 0)$$

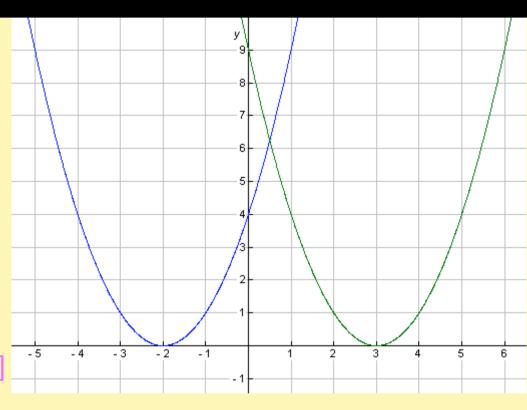
Verschiebung entlang der x-Achse:

$$f(x) = (x + 2)^2$$

$$f(x) = (x - 3)^2$$

Die Zahl in der Klammer gibt die Verschiebung entlang der x-Achse an.

[Achtung: Vorzeichenwechsel!!]



Das heißt:

$$f(x) = (x + 2)^2 \implies S(-2 \mid 0)$$

$$f(x) = (x - 3)^2 \Rightarrow S(+3 | 0)$$

Kombination der Verschiebungen:

$$f(x) = (x + 1)^2 + 3$$

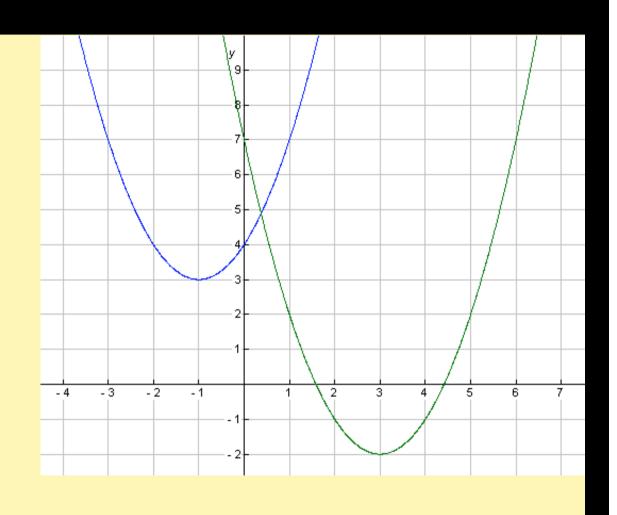
Kombination der Verschiebungen:

$$f(x) = (x + 1)^2 + 3$$

Das heißt:

$$f(x) = (x + 1)^2 + 3$$

 $\Rightarrow S(-1 | 3)$



Kombination der Verschiebungen:

$$f(x) = (x + 1)^2 + 3$$

$$f(x) = (x - 3)^2 - 2$$

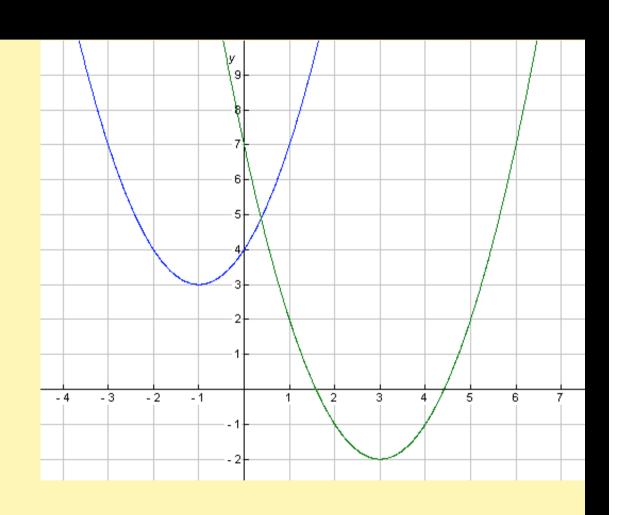
Das heißt:

$$f(x) = (x + 1)^2 + 3$$

 $\Rightarrow S(-1 | 3)$

$$f(x) = (x - 3)^2 - 2$$

$$\Rightarrow$$
 S (+3 | -2)



Formveränderung der Parabel:

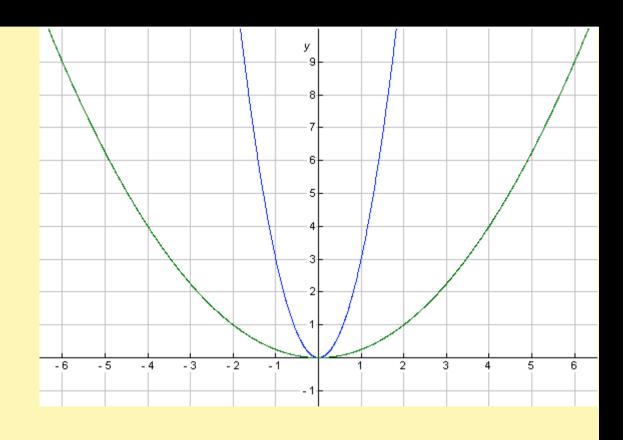
$$f(x) = 3x^2$$

Formveränderung der Parabel:

$$f(x) = 3x^2$$

Das heißt:

Die Parabel ist **gestreckt.**



Formveränderung der Parabel:

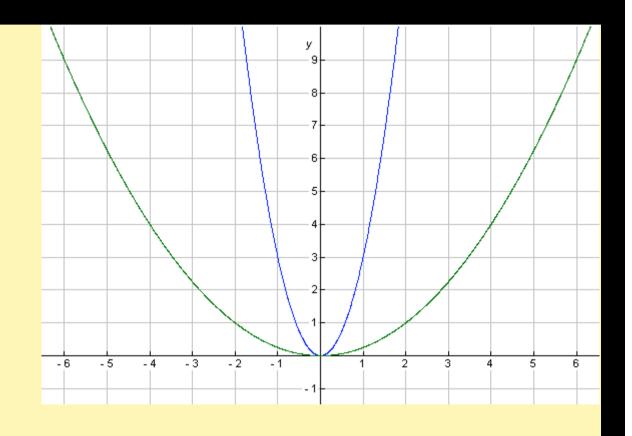
$$f(x) = 3x^2$$

$$f(x) = 0.25x^2$$

Das heißt:

Die Parabel ist **gestreckt.**

Die Parabel ist **gestaucht.**



Formveränderung der **Parabel:**

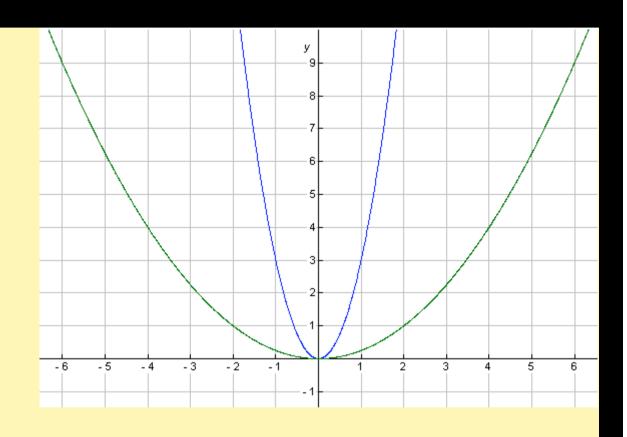
$$f(x) = 3x^2$$

$$f(x) = 0.25x^2$$

Das heißt:

Die Parabel ist gestreckt.

Die Parabel ist gestaucht.



Es gilt:

(a)

a > 0

die Parabel ist gestreckt (schmal)

(b)

Normalparabel

0<a<1 ⇒

die Parabel ist gestaucht (breit)

Wie sieht die Parabel aus, wenn der Faktor vor x² negativ ist?

Beispiele: (a) $y = -3x^2$

(b) $y = -1 x^2$

(c) $y = -0.5 x^2$

Wie sieht die Parabel aus, wenn der Faktor vor x² negativ ist?

Beispiele: (a

(a)
$$y = -3 x^2$$

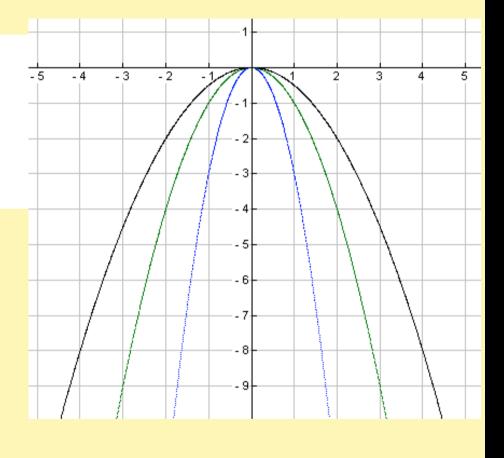
(b)

$$y = -1 x^2$$

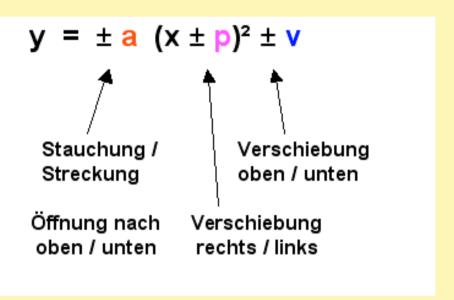
(c)

$$y = -0.5 x^2$$

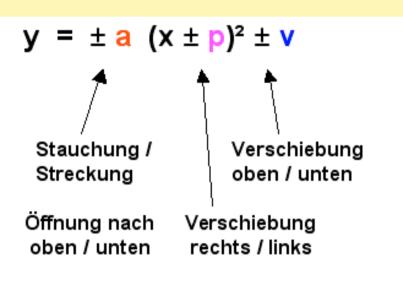
Die Parabel steht "auf dem Kopf".



Wir können auch alle Möglichkeiten kombinieren:

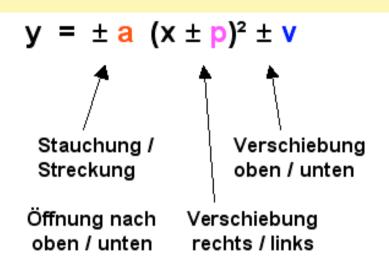


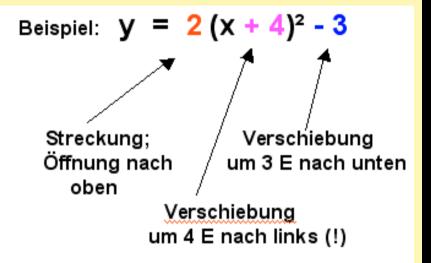
Wir können auch alle Möglichkeiten kombinieren:



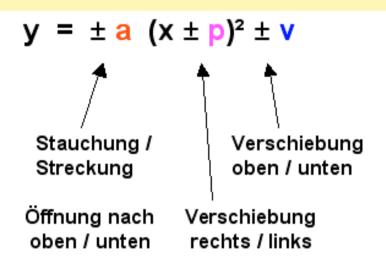
Beispiel: $y = 2(x + 4)^2 - 3$

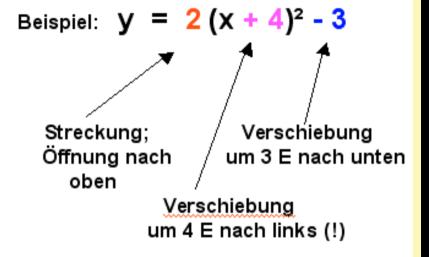
Wir können auch alle Möglichkeiten kombinieren:





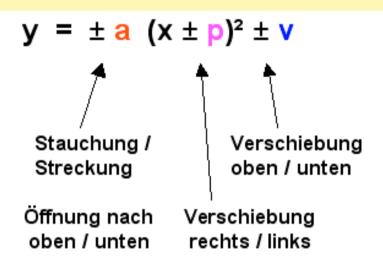
Wir können auch alle Möglichkeiten kombinieren:

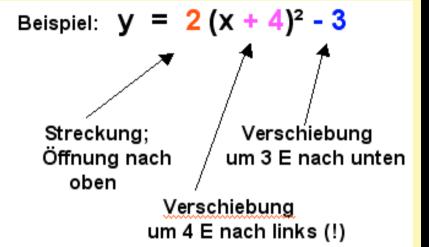




Hieraus ergibt sich der Scheitelpunkt:

Wir können auch alle Möglichkeiten kombinieren:





Hieraus ergibt sich der Scheitelpunkt:

$$S(-4/-3)$$

$$f(x) = 3 (x+7)^2 + 3$$

$$f(x) = 0.6 x^2 - 2$$

$$f(x) = -8 (x - 2)^2 + 2,4$$

$$f(x) = -0.5 x^2 - 17$$

$$f(x) = 4.3 (x + 12)^2 - 7$$

$$f(x) = -2.2 (x + 2.2)^2$$

$$f(x) = 3 (x+7)^2 + 3$$

$$f(x) = 0.6 x^2 - 2$$

$$f(x) = -8 (x - 2)^2 + 2,4$$

$$f(x) = -0.5 x^2 - 17$$

$$f(x) = 4.3 (x + 12)^2 - 7$$

$$f(x) = -2,2 (x +2,2)^2$$

Wir bestimmen den Scheitelpunkt:

$$f(x) = 3 (x+7)^2 + 3$$

S(-7/3)

$$f(x) = 0.6 x^2 - 2$$

$$S(0/-2)$$

$$f(x) = -8 (x - 2)^2 + 2,4$$

$$f(x) = -0.5 x^2 - 17$$

$$f(x) = 4.3 (x + 12)^2 - 7$$

$$f(x) = -2,2 (x +2,2)^2$$

$$f(x) = 3 (x+7)^2 + 3$$

$$f(x) = 0.6 x^2 - 2$$

$$f(x) = -8 (x - 2)^2 + 2,4$$

$$f(x) = -0.5 x^2 - 17$$

$$f(x) = 4.3 (x + 12)^2 - 7$$

$$f(x) = -2,2 (x +2,2)^2$$

$$S(0/-2)$$

$$f(x) = 3 (x+7)^2 + 3$$

$$f(x) = 0.6 x^2 - 2$$

$$f(x) = -8 (x - 2)^2 + 2,4$$

$$f(x) = -0.5 x^2 - 17$$

$$f(x) = 4.3 (x + 12)^2 - 7$$

$$f(x) = -2.2 (x +2.2)^2$$

$$S(0/-2)$$

$$f(x) = 3 (x+7)^2 + 3$$

$$f(x) = 0.6 x^2 - 2$$

$$f(x) = -8 (x - 2)^2 + 2,4$$

$$f(x) = -0.5 x^2 - 17$$

$$f(x) = 4.3 (x + 12)^2 - 7$$

$$f(x) = -2,2 (x +2,2)^2$$

$$S(0/-2)$$

$$f(x) = 3 (x+7)^2 + 3$$

$$f(x) = 0.6 x^2 - 2$$

$$f(x) = -8 (x - 2)^2 + 2,4$$

$$f(x) = -0.5 x^2 - 17$$

$$f(x) = 4.3 (x + 12)^2 - 7$$

$$f(x) = -2,2 (x +2,2)^2$$

$$S(0/-2)$$

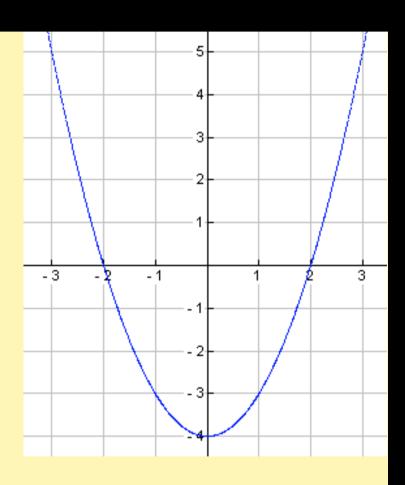
$$S(-2,2/0)$$

Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$



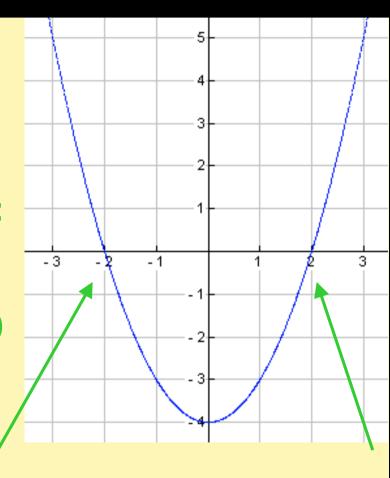
Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Diese Funktion hat zwei Nullstellen:

 $N_1 (-2/0)$ und $N_2 (2/0)$

(die Schnittpunkte mit der x-Achse)



Bestimmung der Nullstellen

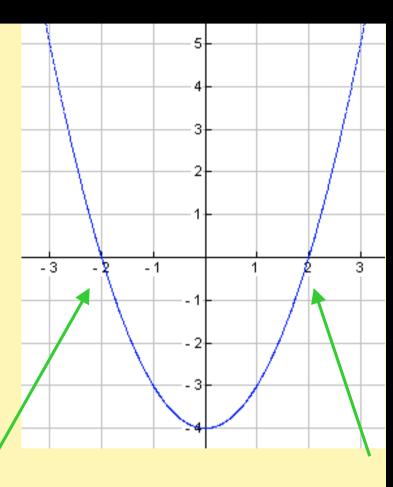
$$f(x) = x^2 - 4$$

Diese Funktion hat zwei Nullstellen:

 $N_1 (-2/0)$ und $N_2 (2/0)$

(die Schnittpunkte mit der x-Achse)

Bei Nullstellen ist der y-Wert immer 0.



Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Wir können die Nullstellen auch berechnen:

Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Wir können die Nullstellen auch berechnen:

Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Wir können die Nullstellen auch berechnen:

$$0 = x^2 - 4 + 4$$

Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Wir können die Nullstellen auch berechnen:

$$0 = x^2 - 4 + 4$$

$$4 = x^2 \qquad | \quad \sqrt{}$$

Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Wir können die Nullstellen auch berechnen:

$$0 = x^2 - 4 + 4$$

$$4 = x^2 \qquad | \quad \sqrt{}$$

$$\pm 2 = x_{1/2}$$

Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Wir können die Nullstellen auch berechnen:

Dazu setzen wir y = 0.

$$0 = x^{2} - 4 + 4$$

$$4 = x^{2} + \sqrt{1 + 4}$$

$$\pm 2 = x_{1/2}$$

das heißt: $x_1 = 2$ und $x_2 = -2$

Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Wir können die Nullstellen auch berechnen:

Dazu setzen wir y = 0.

$$0 = x^{2} - 4 + 4$$

$$4 = x^{2} + \sqrt{1 + 4}$$

$$\pm 2 = x_{1/2}$$

das heißt: $x_1 = 2$ und $x_2 = -2$

N1(2/0) und N2(-2/0)

Bestimmung der Nullstellen

$$f(x) = x^2 - 4$$

Wir können die Nullstellen auch berechnen:

Dazu setzen wir y = 0.

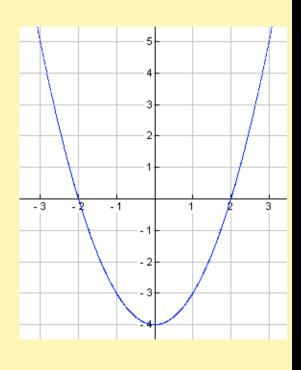
$$0 = x^{2} - 4 + 4$$

$$4 = x^{2} + \sqrt{1 + 4}$$

$$\pm 2 = x_{1/2}$$

das heißt: $x_1 = 2$ und $x_2 = -2$

N1(2/0) und N2(-2/0)



1. Fall:
$$y = x^2 - 3$$

1. Fall:
$$y = x^2 - 3$$

0 = $x^2 - 3$ | + 3

1. Fall:
$$y = x^2 - 3$$

 $0 = x^2 - 3 \mid + 3$
 $3 = x^2 \mid \sqrt{}$

1. Fall:
$$y = x^2 - 3$$

 $0 = x^2 - 3 + 3$
 $3 = x^2 + \sqrt{1}$
 $\pm 1.7 = x$

1. Fall:
$$y = x^2 - 3$$

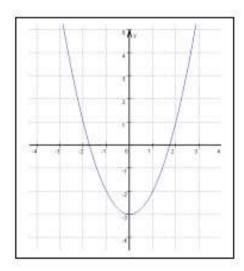
 $0 = x^2 - 3 + 3$
 $3 = x^2 + \sqrt{2}$
 $\pm 1.7 = x$
 $N_1 (+1.7 / 0)$
 $N_2 (-1.7 / 0)$

Beispiele für die Berechnung der Nullstellen:

$$y = x^2 - 3$$

 $0 = x^2 - 3 \mid + 3$
 $3 = x^2 \mid \sqrt{ }$
 $\pm 1,7 = x$

2 Nullstellen

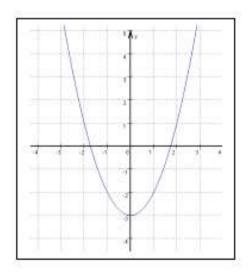


Beispiele für die Berechnung der Nullstellen:

$$y = x^2 - 3$$

 $0 = x^2 - 3 \mid + 3$
 $3 = x^2 \mid \sqrt{ }$
 $\pm 1.7 = x$

2 Nullstellen



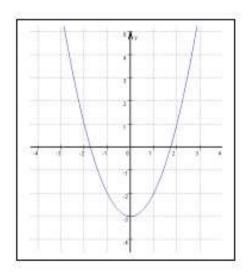
2. Fall: $y = x^2$

Beispiele für die Berechnung der Nullstellen:

$$y = x^2 - 3$$

 $0 = x^2 - 3 \mid + 3$
 $3 = x^2 \mid \sqrt{ }$
 $\pm 1.7 = x$

2 Nullstellen



2. Fall:
$$y = x^2$$

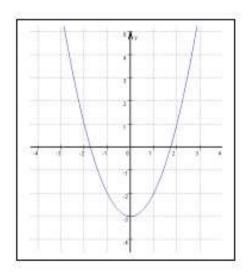
0 = $x^2 \mid \sqrt{ }$

Beispiele für die Berechnung der Nullstellen:

$$y = x^2 - 3$$

 $0 = x^2 - 3 \mid + 3$
 $3 = x^2 \mid \sqrt{ }$
 $\pm 1.7 = x$

2 Nullstellen



2. Fall:
$$y = x^2$$

 $0 = x^2 \mid \sqrt{0}$
 $0 = x$

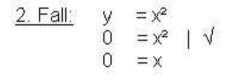
Beispiele für die Berechnung der Nullstellen:

<u>1. Fall:</u>

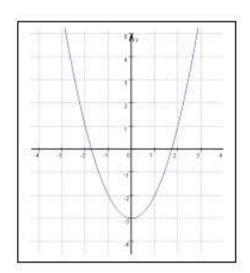
$$y = x^{2} - 3$$

 $0 = x^{2} - 3 \mid + 3$
 $3 = x^{2} \mid \sqrt{ }$
 $\pm 1.7 = x$

2 Nullstellen



1 Nullstelle

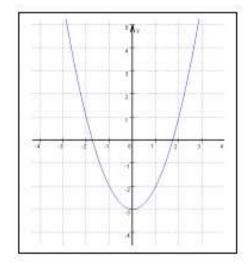


Beispiele für die Berechnung der Nullstellen:

1. Fall:
$$y = x^2 - 3$$

 $0 = x^2 - 3 + 3$
 $3 = x^2 + \sqrt{1}$
 $\pm 1.7 = x$

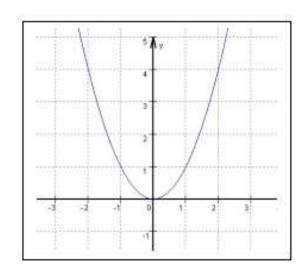
2 Nullstellen



2. Fall:
$$y = x^2$$

 $0 = x^2 \mid \sqrt{0}$
 $0 = x$

1 Nullstelle

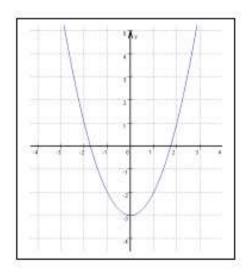


Beispiele für die Berechnung der Nullstellen:

1. Fall:
$$y = x^2 - 3$$

 $0 = x^2 - 3 \mid + 3$
 $3 = x^2 \mid \sqrt{ }$
 $\pm 1.7 = x$

2 Nullstellen

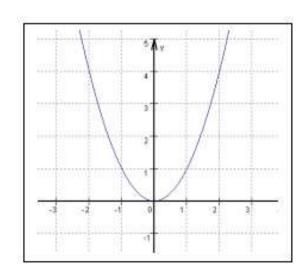


2. Fall:
$$y = x^2$$

 $0 = x^2 \mid \sqrt{0}$
 $0 = x$

N(0/0)

1 Nullstelle



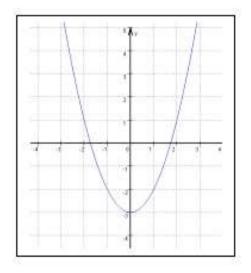
3. Fall: $y = x^2 + 2$

Beispiele für die Berechnung der Nullstellen:

1. Fall:
$$y = x^2 - 3$$

 $0 = x^2 - 3 \mid + 3$
 $3 = x^2 \mid \sqrt{ }$
 $\pm 1.7 = x$

2 Nullstellen

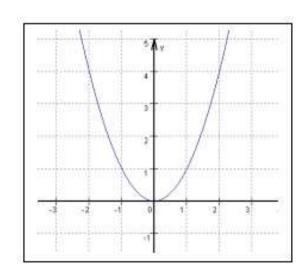


2. Fall:
$$y = x^2$$

 $0 = x^2 \mid \sqrt{0}$
 $0 = x$

N(0/0)

1 Nullstelle



3. Fall:
$$y = x^2 + 2$$

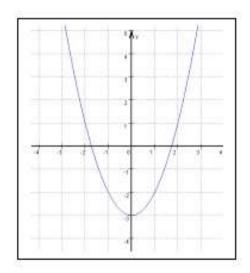
0 = $x^2 + 2 \mid -2$

Beispiele für die Berechnung der Nullstellen:

1. Fall:
$$y = x^2 - 3$$

 $0 = x^2 - 3 + 3$
 $3 = x^2 + \sqrt{1}$
 $\pm 1.7 = x$

2 Nullstellen

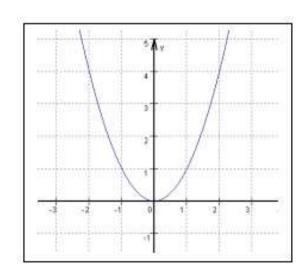


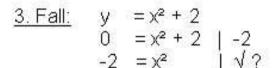
2. Fall:
$$y = x^2$$

 $0 = x^2 \mid \sqrt{0}$
 $0 = x$

N(0/0)

1 Nullstelle



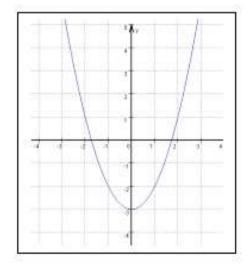


Beispiele für die Berechnung der Nullstellen:

1. Fall:
$$y = x^2 - 3$$

 $0 = x^2 - 3 \mid + 3$
 $3 = x^2 \mid \sqrt{$
 $\pm 1.7 = x$

2 Nullstellen

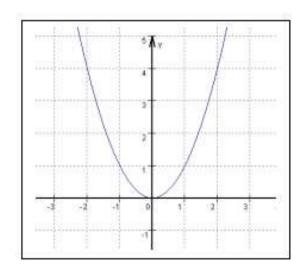


2. Fall:
$$y = x^2$$

 $0 = x^2 \mid \sqrt{0}$
 $0 = x$

N(0/0)

1 Nullstelle



3. Fall: $y = x^2 + 2$ $0 = x^2 + 2$ $-2 = x^2$

keine Nullstelle

Beispiele für die Berechnung der Nullstellen:

1. Fall:
$$y = x^2 - 3$$

 $0 = x^2 - 3 \mid + 3$
 $3 = x^2 \mid \sqrt{ }$
 $\pm 1.7 = x$

2 Nullstellen

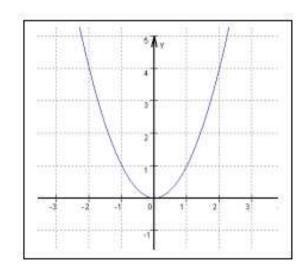


2. Fall:
$$y = x^2$$

 $0 = x^2 \mid \sqrt{0}$
 $0 = x$

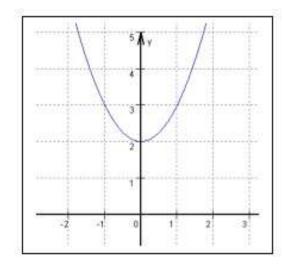
N(0/0)

1 Nullstelle



3. Fall: $y = x^2 + 2$ $0 = x^2 + 2$ $-2 = x^2$

keine Nullstelle



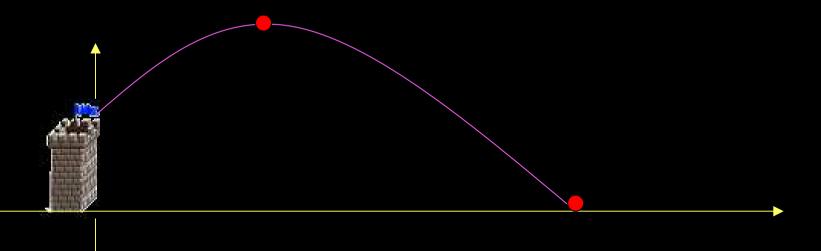
Quadratische Funktionen Anwendungsaufgaben

Anwendungsaufgabe 1:

Ritter Kunibert verteidigt seine Burg und bewirft seine Angreifer mit faulen Tomaten.

Die Flugbahn der Tomaten lässt sich durch die folgende Funktionsgleichung beschreiben:

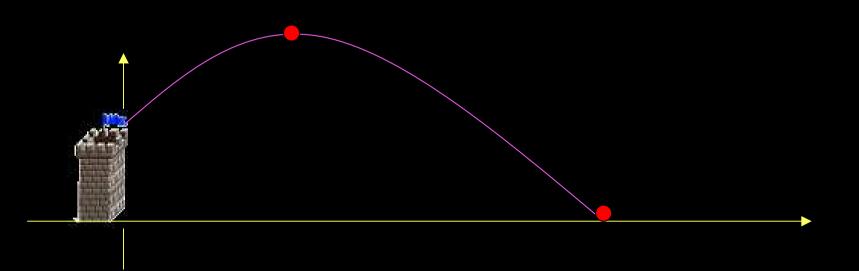
$$f(x) = -0.05 (x - 10)^2 + 45$$



Anwendungsaufgabe 1:

$$f(x) = -0.05 (x - 10)^2 + 45$$

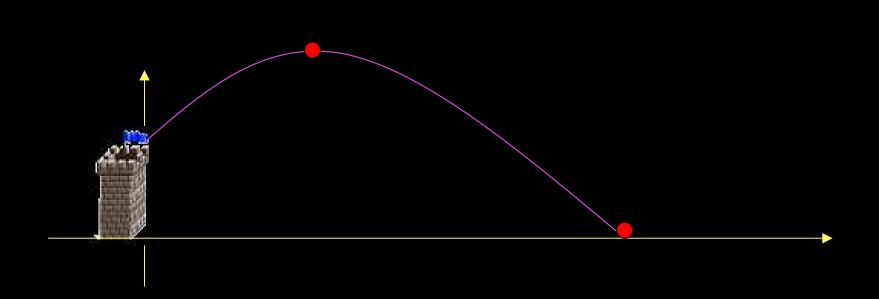
a) Wie hoch ist der Turm?



Anwendungsaufgabe 1:

$$f(x) = -0.05 (x - 10)^2 + 45$$

b) Bis zu welcher Stelle sind die Angreifer gerade noch zu treffen?



Anwendungsaufgabe 1:

$$f(x) = -0.05 (x - 10)^2 + 45$$

c) Wie hoch fliegen die Tomaten maximal?

